Modularized Exception Handling

Martin S. Feather
JPL - Mail Stop 125-233, 4800 Oak Grove Drive, Pasadena CA 91109-8099, USA
Email: feather@jpl.nasa.gov
(This work was performed while at USC/Information Sciences Institute)

Abstract

When programs share data, it would be convenient if those
programs could make their own assumptions about that
data, without requiring the data to satisfy all the programs’
assumptions simultaneously. Even when the same assump-
tion is shared by several programs, it would be convenient
to allow those programs to treat violations of that assump-
tion differently. One an approach towards achieving this is
to give each program its own view of the shared data.

A mechanism implementing this approach is described.
It derived each program’s view from the shared data so as to
satisfy all that program’s assumptions, by a user-specified
combination of ignoring facts that hold in the shared data
and feigning facts that do not hold.

In general, any approach to such modularizing of ex-
ception handling must strive to meet several desiderata.
These are presented, and the degree to which this partic-
ular mechanism meets them is described. Some alternative
approaches, offering different degrees of achievement of these
desiderata, are briefly discussed.

1 Motivation and Qutline

Consider programs sharing a database of personnel infor-
mation. Suppose that some of those programs make the
assumption that only workers who have security clearances
are working on classified projects. If this assumption is im-
posed on the shared database, then the database is pre-
cluded from holding data violating it (e.g., uncleared worker
Martin working on classified project Stealth). Conversely,
if such violating data is allowed to reside in the shared
database, then every program must be able to tolerate its
presence. Even if this is acceptable, it might be the case that
the programs making the assumption might wish treat vio-
lations in different ways (e.g., one program might ignore the
fact that Martin works on project Stealth; another might
feign the fact that Martin is cleared; yet another might ig-
nore the fact that Stealth is classified). As a different ex-
ample, consider a shared pool of epidemiological data (e.g.,

heights, weights, ages, etc., of people grouped into various
treatment classes). Some programs may assume that ev-
ery person has a height recorded in the database; of these,
one may wish to substitute its own default value when the
a person’s height value is missing, while another program
might wish to ignore that person entirely when performing
analysis.

To accommodate multiple programs sharing common data,
one possible solution is to give each program its own wview of
the shared data. Each program’s view is derived from the
shared data in such a way as to satisfy all that program’s
assumptions, and to treat violations of those assumptions in
the manner required by that program. For example, a pro-
gram assuming that only workers who have security clear-
ances are working on classified projects could be given a
view in which every uncleared worker who works on a clas-
sified project appear to be cleared. In the remainder, sec-
tion 2 outlines a prototype mechanism that implements this
view-based approach. Section 3 discusses some of its im-
plementation details. Section 4 presents a set of desiderata
likely to be shared by any solution to the overall problem,
and considers the extent to which the particular mechanism
described herein meets them. Section 5 outlines the key
capabilities required for the rapid prototyping of this mech-
anism. Section 6 considers some related work, and finally
section 7 offers some speculations based on this experience.

2 MEH - a Prototype Mechanism for Modularized
Exception Handling

A mechanism, called MEH herein, has been prototyped.
This section provides an overview of its operation from the
user’s point of view.

2.1 Overview of MEH

MEH supports arbitrary assumptions (any assumption that
can be expressed as a predicate over the database), but only
a limited range of violation handlers — these work by ig-
noring facts within the shared database, and/or by feign-
ing facts to hold that do not hold in the shared database.
The programmer is required to provide simple declarations
of all the assumptions imposed by his/her program, and
corresponding violation handlers. From these declarations,
MEH constructs automatically the code that:

e derives that program’s view of the shared database;

e causes the program’s updates to be attempted on the
shared database — MEH admits the possibility that

one program’s updates violates another program’s as-
sumptions and cannot be handled by the correspond-
ing violation handlers; in such a case, the transaction
performing those updates is not allowed to occur, and
the data is left unchanged (as would be the case if the
program violated one or more of its own assumptions
and the handler could not compensate).

2.2 Declaration of Assumptions and Violation Han-
dling

MEH requires all of a program’s assumptions to be de-
clared. Each such declaration is local to its program, and
comprises a name and definition (an arbitrary predicate over
the data as viewed by the program).

EXAMPLE: Suppose that a program needs to assume
that: every worker who works on a classified project must be
cleared: The assumption is declared to MEH as follows!:

assumption CLASSIFIED-REQUIRES-CLEARED(w,p) =
(WORKER(w) A PROJECT(p) A
WORKS-ON(w,p) A CLASSIFIED(p)) D
CLEARED(w)

CLASSIFIED-REQUIRES-CLEARED is the name being given
to this assumption. Its formal parameters, w and p together
with its body (WORKER(w) ...) D CLEARED(w), define the
following predicate universally quantified over those param-
eters:

V (w,p) (WORKER(w) A PROJECT(p) A
WORKS-ON(w,p) A CLASSIFIED(p)) D
CLEARED(w)

Separately, MEH requires the declaration of violation
handlers, which will be applied when the shared database’s
data does not satisfy all of the program’s assumptions. They
will be used to construct a view in which facts in the shared
database are ignored, and/or facts not in the shared database
are feigned, in the view of the data seen by the program.

EXAMPLE (continued): suppose the aforementioned pro-

gram wishes to treat violations of the assumption (instances
of uncleared workers working on classified projects) by ig-
noring the works-on relation between uncleared worker and
classified project. This is declared to MEH as follows:

handler CLASSIFIED-REQUIRES-CLEARED(w,p) =
{ ignore WORKS-ON(w,p) }

The handler is given the same name as the assump-
tion whose violations it will respond to. Its definition con-
sists of a set (in this example a singleton set) whose el-
ements are of the form ignore <relation-name>(<tuple
of objects>), and/or feign <relation-name>(<tuple of
objects>). Every binding of objects to parameters that
causes the assumption’s predicate to evaluate to false (i.e.,
is an assumption violation) is used to instantiate the vari-
ables of the handler’s set.

EXAMPLE (alternative): consider a different program
making the same assumption as before, but wishing to treat

LAll the boxed declarations and code fragments in this paper are
examples run through MEH. The parenthesis-dominated Lisp-like
syntax it employs has been re-expressed in a more widely palatable
syntax for readability. Relation queries take the form <relation-
name>(<arguments>), for example, WORKS-ON(w,p) is a query
of whether the 2-tuple of objects referred to by w and p is in the
WORKS-ON relation.

violations by by feigning that those (uncleared) workers work-
ing on classified projects are cleared. This would be declared
to MEH as follows:

handler CLASSIFIED-REQUIRES-CLEARED (w,p) =
{ feign CLEARED(w) }

3 Implementation of MEH

In order to give each program its own suitably derived view
of the shared database, MEH generates, for each program,
a new definition local to only that program of every relation
feigned and/or ignored by one or more of that program’s
assumptions’ repairs.

Each such new local relation definition is expressed in
terms of the corresponding relation in the shared database,
and two new relations (also local to only that program) hold-
ing facts to be ignored/feigned by the program.

For example, if binary relation WORKS-ON is feigned and/or
ignored in a program’s handler, MEH creates the following
definitions local to that program:

relation feign-WORKS-ON
relation ignore-WORKS-ON

relation WORKS-ON(w,p) =
feign-WORKS-ON(w,p) V
SDB: : WORKS-ON(w,p) A
— ignore-WORKS-ON(w,p)

The above uses the underlying database system’s capa-
bility for defining relations in terms of other relations in the
database. The general form of this construction is:
relation <name>(<n-tuple of variables>) =

< predicate over those variables>
For any n-tuple of objects in the database, the relation so
defined will hold of that tuple if and only if its defining
predicate evaluates to true for that tuple.

Thus WORKS-0N is defined to hold of a 2-tuple of objects
w and p if and only if the following predicate holds of those
objects:

feign-WORKS-0ON(w,p) V
SDB: : WORKS-0N (w,p) A
— ignore-WORKS-0N(w,p)

SDB: : WORKS-0N is the way of referring to the WORKS-ON
relation of the shared database (SDB is mnemonic for Shared
DataBase). Note that ignore-WORKS-ON and feign-WORKS-ON,
have been defined local to this particular program; other
programs may have their own local versions of these rela-
tions holding different sets of tuples.

The appropriate namespace declarations are generated
to ensure that all references to relation WORKS-0N within the
text of this program will now refer to this locally defined
version, while the original WORKS-ON relation of the shared
database being hidden from view, while all relations of the
shared database which are not redefined locally are left vis-
ible to the program. This provides the program a view of
the shared database without requiring any modification of
the text of the program.

These feign- and ignore- relations are populated by
code which watches for violations of the program’s assump-
tions in the program’s view of the shared database, and re-
acts to the detection of such violations by making assertions

into those two relations as indicated by the violated assump-
tions’ repairs. This code is also generated automatically by
the implementation. Any assumption for which there is no
corresponding handler is turned into code that watches for
violations, but does not make any assertions in response to
their occurrence.

Briefly, the operation of this code is such that each time
a transaction (update to the shared database) is attempted,
the contents of all the ignore- and feign- relations are
re-computed. This is done by:

I. Initializing all the ignore- and feign- relations to be
empty of all tuples (thus restoring each programs’ view
to be identical to the shared database itself).

II. Having each program’s assumption code looks for vio-
lations in its view of the shared database. If no viola-
tions are found, the transaction has been successfully
carried out, yielding a new state of the shared database
from which every program has a derived view satis-
fying all of its assumptions. If violations are found,
then the corresponding handlers’ assertions to feign-
and/or ignore- relations are gathered. All these asser-
tions are simultaneously added to the initiating trans-
action, i.e., yield a new state of the shared database
in which the assertions of the original transaction and
all of these additional assertions have been carried out
(thus likely changing the programs’ views, since those
views are defined in terms of feign- and ignore- re-
lations).

Step 2 is repeated until either the process has terminated
successfully, or one of the following unsuccessful termination
conditions occurs:

e For some tuple of objects and relation R, both ignore-R
and feign-R have been asserted of that same tuple.

o No new assertions of ignore-R and feign-R have been
added (thus repeating step 2 will have no effect what-
soever, i.e., an infinite loop).

e The number of repetitions of step 2 has reached some
pre-set limit (a crude approximation of an infinite loop
check).

Unsuccessful termination causes the transaction that initi-
ated to be retracted (i.e., the database is restored to the
state it was prior to starting this transaction), and the pro-
gram attempting the transaction is informed of its failure.

It is important to realize that only the code introduced
by MEH ever sees a database in any of the intermediate
states of this iterative process — the original programs will
always find themselves operating in views satisfying all of
their assumptions.

The overall approach requires these updates to be con-
ducted on the shared database (so that this remains as a
medium of communication among the programs). Hence, in
defining the local relation, MEH adds the appropriate code
to cause an update to these locally defined relations to be
passed on as an update of the corresponding relation in the
shared database.

4 Desiderata

4.1 Desiderata

In the quest of permitting programs sharing data to impose
not-necessarily-identical sets of assumptions on that data,

and to allow violations of assumptions to be treated differ-
entially by different programs, the following are the critical
desiderata:

I. Convenience: modification of those programs to fit the
approach should be easy.

I1. Efficiency: any additional run-time burden (both time
and space) imposed by the approach should be mini-
mized.

III. Applicability: as wide a range of assumptions and
treatment of violations as possible should be supported.

IV. Connectedness: the shared data should be retained as
a medium of communication between those programs;
it should be updatable by any of them.

V. Unhindered: the updates made by one program should
not be hindered by the assumptions made by another
program.

VI. Determination of divergence: an important aspect of
the view-based approach is that each program’s view
can be different from actual data being shared. Thus
two programs might be seeing widely different views.
It should be possible to determine the degree of diver-
gence between a program’s view and the shared data,
or between two programs’ views.

Note that if efficiency and connectedness are unimpor-
tant for some application, it would suffice to replicate the
data, giving each program its own entire copy on which it
could apply traditional exception handling mechanisms.

4.2 MEH'’s desiderata tradeoffs

MEH achieves these desiderata to varying degrees of suc-
cess, as outlined next:

Convenience: the programmer is required to provide MEH
with declarations of the assumptions and repairs (tuples to
be feigned or ignored) to violations of those assumptions.
These declarations are relatively straightforward, and from
them MEH automatically constructs all the additional code
required. In particular, the programmer need not make any
changes to the program text. MEH guarantees that the
program will operate in a view in which all of its assump-
tions are always met.

Efficiency: there are two sources of run-time perfor-
mance penalty when MEH’s code is employed. 1) Every
query by a program of a relation local to that program’s
view (i.e., whose tuples may be ignored and/or feigned in
that relation’s view) must go through the computation in-
volving the ignore- and feign- relations associated with
that relation. 2) an update to a relation for which there is
a program with its own local view of that relation necessi-
tates the recomputation of each such program’s entire view.
In many circumstances this complete recomputation is un-
necessary, and a more incremental computation of the view
would suffice — pursuit of this is future work.

Applicability: any assumption that can be stated as a
predicate over the database can be dealt with by MEH.
Each program will be guaranteed a view in which its as-
sumptions always holds. This gives MEH wide applicabil-
ity. Handling of assumption violations is achieved by feign-
ing and ignoring of tuples. While in principle any view could

be derived by a suitable combination of ignoring and feign-
ing of tuples, the convenience of doing so rests upon the
ease of expressing this as a combination of ignores/feigns
responses, and as such may be a practical limitation.

Connectedness: the shared database does remain as a
medium of communication between the programs. Because
programs’ updates are passed on to and carried out in the
shared database, and because programs’ views are derived
from the shared database, they will see immediately the
effects of each others’ updates (suitably modified through
their own views, of course).

Unhindered: MEH does not guarantee that one pro-
gram’s updates be unhindered by another program’s as-
sumptions. If an update is such that not all programs are
able to recompute a view consistent with their assumptions,
then that update is not allowed to happen, the database is
left unchanged, and the program making the update is in-
formed of the failure. An open question regarding MEH is
to be able to analyze sets of assumption so as to determine
whether (and if so under what conditions) updates might be
so hindered.

Determination of divergence: Using MEH determinta-
tion of divergence between different programs’ views, or be-
tween a program’s view and the contents of the shared data
base, is straightforward. For example, if the values in the
WORKS-ON relation might differ between a program’s view
and the shared data base, then the following query, when
evaluated in the program’s view, will retrieve all the tuples
in the shared data base but not in the program’s view:

(listof (w,p) s.t.
SDB::WORKS-ON(w,p) A = WORKS-ON(w,p))

(Recall that by issuing this query in the program’s view,
WORKS-ON (w,p) refers to the relation as viewed by the pro-
gram while SDB: : WORKS-0N(w,p) refers to the relation in the
shared database.)

5 Key Capabilities for Implementation

MEH is built on top of ISI’s in-house virtual memory re-
lational database AP5 [3], an extension of CommonLisp.
However, the key capabilities employed to construct MEH
are common; they are as follows:

Simple modularization of namespaces — built in terms of
the package facility of CommonLisp [9]. This allows place-
ment of relation definitions in the namespaces local to partic-
ular programs, thus “shadowing” (hiding) the same-named
relation residing in the shared database. Any reasonable
modularization facility would offer the necessary capabili-
ties to do this. Lacking such a capability, an alternative
approach would be to pre-process the program texts, alter-
ing all their uses of the affected relations to refer instead to
the newly defined relations, i.e., a readily-automated modi-
fication of program texts.

Defining a database relation in terms of other database
relations — such a capability (known as providing derived
data) is commonly supported in database work (e.g., see
[6]). MEH employs the additional capability to have an
update to such a defined relation be passed on as an update
to some other relation. If this additional capability were
not available, simple pre-processing of program texts would
again suffice as an alternative means of achievement.

Constraints (also referred to as integrity conditions, in-
variants or consistency checks) and accompanying transac-
tion/rollback mechanism that guard a database from enter-
ing a state violating one or more constraints. Any transac-
tion that causes a violation is prevented from occurring, and
the database is left in the state it was prior to starting that
transaction.

A repair mechanism for constraints that adjusts a constraint-

violating transaction to (try to) result in a transaction that
meets all the constraints. Event-condition-action capabil-
ities of databases [7] and [4] offer the necessary building
blocks from which to construct a mechanism such as needed
here.

6 Related Work

6.1 Tolerating Exceptions

Established mechanisms for handling of persistent excep-
tions (ones that must remain present in the data for some
extended period of time) are generally intended for a con-
text in which a program or programs all deal uniformly with
violations of the data in a single database.

Borgida did early work on handling persistent violations
of assumptions [2]. One of the ideas proposed there is that
of blaming a violation on one or more of the database facts;
this MEH’s motivation for violation handling by ignoring
or feigning certain database facts as viewed by programs.

Borgida allows such violations to persist by adjusting the
definition of the constraint just enough to tolerate them. He
uses assignment of blame to indicate which database fact is
the “unusual” one. This indication can then be used in two
ways: by the program, provided it has been designed to
look for and treat such unusual facts accordingly, and by
the database, to adjust the definition of the constraint to
tolerate that violation in the data. MEH’s ability to ignore
facts present in the database or feign facts not present is
similar to Borgida’s second use of blamed facts, but rather
than adjusting the constraint to tolerate the violation, I in-
stead use the constraint to generate the definitions that in
turn adjust the program’s view of the facts in the database.
The key distinction is that MEH requires no modification
to the program code. Borgida’s approach would seem to be
better suited to incrementally accommodating exceptional
data as it arises at run-time.

Balzer suggested the treatment of persistent violations
to assumptions by having the data involved in them auto-
matically marked as polluted [1]. The data-accessing code
can then look for data marked as polluted, and treat it ac-
cordingly. The marking of polluted data is performed au-
tomatically, the code to do this derived from a declaration
of the assumption. This works for any assumption, but re-
quires the explicit modification of the program code to look
for, and react accordingly to, polluted data.

6.2 Multiple level secure databases

In the world of multiple level secure databases there are
levels of security (‘top-secret’, ‘secret’, etc.) assigned to
data (‘classification’) and to users (‘clearance’). In this con-
text, users must never be able to access data of a higher
level of classification than their own clearance. Thus users
with different levels of clearance sharing the same database
see different versions of the data. View-based approaches
have been applied, where the data in the shared database is

marked with its classification (in some implementations this
marking can be as fine-grained as on a tuple-by-tuple basis),
and the user’s view derived from this shared database con-
tains only the data classified at or below that user’s clear-
ance level. See [6] for an instance of this work; [10] for a
discussion of ‘polyinstantiation’; the term used by this com-
munity to refer to the issue of giving different views of the
same set of facts to different users, and [8] (section 6.1 in
particular), for a recent taxonomy.

There are clear similarities between the desiderata sug-
gested in this paper, and those needed by the security com-
munity. The key differences are:

¢ MEH supports a wide range of assumptions and cor-
responding treatments, whereas the secure database
community addresses a restricted range — primarily
the hiding (‘ignoring’ in my terms) of certain informa-
tion from certain users.

e MEH'’s ability to answer a user’s queries about differ-
ences between his/her view and the shared database
would, of course, have to be disabled.

e The security community’s hiding concerns encompass
not only explicit queries, but also ‘covert channels’
(any usage of the system through which information
may flow to a user with less clearance than required).
The latter have not been addressed at all in MEH. For
example, MEH’s response time to a query may well
vary depending on whether or not information was be-
ing ignored, whereas in the secure database world this
might be a means by which a user could deduce the
presence, and perhaps contents, of information sup-
posed to be hidden from him /her. Another implication
of avoiding covert channels is that any transaction that
would be valid in a user’s view should not be precluded
because of a violation involving data and/or assump-
tions of some higher level of clearance. Deciding when
this is the case remains an open question in MEH.

7 Speculations

Rapid prototyping of MEH (and Balzer’s own mechanism
[1]) was made relatively straightforward by building on top
of a relational database offering derived data, general con-
straints, and transaction repair mechanisms. This suggests
that for the purposes of exploration and experimentation of
viewpoint resolution mechanisms, mechanisms provided by
advanced databases provide an effective starting point.
Handling of exceptions in data shared among multiple

programs raises a number of (somewhat contradictory) desider-

ata. The mechanism presented, MEH, is but one possible
solution, with its own set of strengths and weaknesses with
respect to these desiderata. Other mechanisms exhibit other
tradeoffs, and further exploration of the space of possibili-
ties is desirable. A clear categorization of approaches to
exception handling, such as that begun by Etzion [4], would
be most helpful in revealing the relationships between this
growing body of work.

Acknowledgements This research was conducted at USC/ISI,

supported by Advanced Research Projects Agency contract
No. F30602-93-C-0240. I particularly thank Don Cohen for
APS5 support, Bob Balzer and Dave Wile for discussions on
violation handling, and Bashar Nuseibeh for feedback and

encouragement. Views and conclusions in this document are
those of the author and should not be interpreted as repre-
senting the official opinion or policy of JPL, NASA, ARPA,
the U.S. Government, or any other person or agency con-
nected with them.

References

[1] R. Balzer. Tolerating Inconsistency. In Proceedings,
18th International Conference on Software Engineer-
ing, Austin, pages 158-165, Texas, USA, August 1991.
IEEE Computer Society Press.

[2] A. Borgida. Language Features for Flexible Handling of
Exceptions in Information Systems. ACM Transactions
on Database Systems, 10(4):565-603, December 1985.

[3] D. Cohen. Compiling complex database transition trig-
gers. In Proceedings, ACM SIGMOD International
Conference on the Management of Data, pages 225-
234, Portland, Oregon, 1989. ACM Press. SIGMOD
RECORD Volume 18, Number 2, June 1989.

[4] O. Etzion. A reflective approach for data-driven rules.
International Journal of Intelligent and Cooperative In-
formation Systems, 2(4):399-424, 1993.

[5] S. Koenig and R. Paige. Control of derived data. In
Proc. VLDB, pages 306-318, 1981.

[6] T.F. Lunt, D.E. Denning, R.R. Schell, M. Heckman,
and W.R. Shockley. The SeaView Security Model.
IEEE TSE, 16(6):593-607, June 1990.

[7] D. McCarthy and U. Dayal. The architecture of an
active data base management system. In Proceedings
of the 1989 SIGMOD conference, pages 215-224, 1989.

[8] M.S. Olivier and S.H. von Solms. A Taxonomy for Se-
cure Object-Oriented Databases. IEEE Transactions
on Database Systems, 19(1):3-46, March 1994.

[9] G.L. Steele. Common Lisp: the language. Digital Press,
1984.

[10] M.B. Thuraisingham. Mandatory Security in Object-
Oriented Database Systems. In Proceedings of the
Conference on Onject-Oriented Programming Systems,
Languages and Applications, pages 203-210. ACM,
1989.

